
Amphion/NAV: Deductive Synthesis of State Estimation Software

Jon Whittle Jeffrey Van Baalen Johann Schumann
Peter Robinson Tom Pressburger John Penix
Phil Oh Michael Lowry Guillaume Brat

ASE Group: NASA, QSS, RIACS, Kestrel Tech., U. Wyoming
NASA Ames Research Center, Moffett Field, CA 94035

1 Introduction

Previous work on domain-specific deductive program
synthesis [11, 12] described the Amphion/NAIF system for
generating Fortran code from high-level graphical specifica-
tions describing problems in space system geometry. Am-
phion/NAIF specifications describe input-output functions
that compute geometric quantities (e.g., the distance be-
tween two planets at a point in time, or the time when a
radio communication path between a spacecraft and earth is
occluded) by composing together Fortran subroutines from
the NAIF subroutine library developed at the Jet Propul-
sion Laboratory. In essence, Amphion/NAIF synthesizes
code for glueing together the NAIF components in a way
such that the generated code implements the specification,
with a concurrently generated proof that this implementa-
tion is correct. Amphion/NAIF demonstrated the success of
domain-specific deductive program synthesis and is still in
use today within the space science community. However, a
number of questions remained open that we will attempt to
answer in this short paper, namely:

� Can the deductive synthesis strategy be extended
from the generation of input-output functions to itera-
tive, imperative programs without incurring the com-
putational complexity penalties entailed by most the-
oretical treatments of the formal derivation of imper-
ative systems?

� Can the methodology for developing an Amphion-
like program synthesis system be used in other do-
mains, particularly where a well-defined component
library does not already exist?

� Can the development of Amphion-like domain-
specific program synthesis systems be modularized,
with substantial reuse at the intersection of domains?

� How can the mechanized proof of implementation
correctness be used in the software process by end-
users unfamiliar with formal methods?

In order to investigate these questions, we developed
Amphion for a new, much richer domain, namely Guid-
ance, Navigation & Control (GN&C) algorithms, in par-
ticular single-mode geometric state estimation software for
aerospace vehicles. AMPHION/NAV generates code for in-
tegrating a model of the vehicle dynamics with a temporal
stream of data from multiple sensor sources in a statistically
optimal way using one or more Kalman filters [1, 4]. GN&C
algorithms are often complex, involving iterative loop algo-
rithms and real-time considerations such as extrapolating
sensor data so that data is integrated at the same point in
time. Although there are standard components available for
this domain (e.g., matrix manipulations, Kalman filter al-
gorithms), there is no easily defined set of components that
cover the domain fully.

AMPHION/NAV incorporates the Amphion/NAIF do-
main theory as one component in a much larger domain
theory, demonstrating a form of theory reuse. In particular,
the Amphion/NAIF domain theory provides the formulation
of the geometric concepts. AMPHION/NAV is also an up-
graded version of the same architecture as Amphion/NAIF,
and thus demonstrates reusability across a number of com-
ponents including the specification interface and the de-
duction engine. AMPHION/NAV incorporates an enhanced
back-end code generator suitable for iterative programs, and
significantly extends the explanation capabilities of the pre-
vious Amphion system [12]. The code generated by AM-
PHION/NAV is annotated with detailed explanations de-
scribing where each expression in the code came from.
These explanations are constructed by tracing automatically
through the proof that produced the code and composing
explanations for each of the axioms used in the proof. As a
result, each program expression can be explained in terms
of the concepts in the specification from which they were
derived. These explanations are given in the form of hyper-
linked text in a standard notation of the GN&C domain.

Because GN&C algorithms are often used in safety-
critical systems, detailed explanations are crucial to provide

a means for a certification body such as the FAA to exam-
ine the code in detail and to know precisely where each code
expression came from. Explanations are also crucial when
the generated code needs to be modified or integrated it into
a larger system.

The domain of state estimation turns out to be a good
challenge domain for deductive synthesis. Developing state
estimation software tends to be a black art. In princi-
ple, the engineer should develop a mathematical model that
closely resembles the real-world characteristics of the prob-
lem. The output of simulation runs on this model should
then be used to refine the model until a threshold level of
accuracy is reached. In practice, however, engineers start
off with a mathematical model but the time and cost con-
straints associated with the project mean that they merely
“tweak” parameters in their code rather than reassessing the
fidelity of the model. Program synthesis encourages anal-
ysis to take place at the modeling level and enables rapid
design space exploration.

2 Background on State Estimation

The domain of interest for AMPHION/NAV is that of ge-
ometric state estimation, i.e., estimating the actual values of
certain state variables (such as position, velocity, attitude)
based on noisy data from multiple sensor sources. The stan-
dard technique for integrating multiple sensor data is to use
a Kalman filter. A Kalman filter estimates the state of a
linear dynamic system perturbed by Gaussian white noise
using measurements linearly related to the state but also
corrupted by Gaussian white noise. The Kalman filter algo-
rithm is essentially a recursive version of linear least squares
with incremental updates.

The state estimation problem can be represented by the
following equations, given in vector form:

��������	��
������������������������ (1)
�������	�����������������������	���� (2)

The first equation is the process model, a vector dif-
ferential equation modeling how the state vector, ������� ,
changes over time. The second equation is the measure-
ment model, relating the measured variables to the state
variables. Specifically, ������� is the state vector (with

������� the
time derivative) of quantities to be estimated (e.g., position,
attitude, etc.), ������� is a vector of measurements (the state
variables are not necessarily measured directly), �	����� , ������
are Gaussian white noise perturbances on the measurement
and process model respectively and
 and � are possibly
nonlinear continuous functions that must be discretized for
implementation purposes.

A Kalman filter is an iterative algorithm that returns a
time sequence of estimates of the state vector, ������� , by fus-
ing the measurements with estimates of the state variables

based on the process model in an optimal fashion, i.e., the
estimates minimize the mean-square estimation error. In
the case where either
 or � is nonlinear, a Kalman filter
can still be used by first linearizing around a “nominal” es-
timate. After linearization and discretization,
 and � can
be represented by matrices � (the state transition matrix)
and � (the measurement matrix) respectively.

The standard implementation of a Kalman filter requires
seven inputs: the � and � matrices, the covariance struc-
ture of the process and measurement noise (������ and �	�����),
an initial state estimate ��	���� � , an error covariance matrix of
the initial estimate and, of course, the sequence of measure-
ments. During each iteration of the filter, the state estimate
is updated based on new measurements and the estimate er-
ror covariance is updated for the next iteration.

The AMPHION/NAV system takes as input a specifica-
tion of the process model (a typical model is a description
of the drift of an INS system over time), a specification of
sensor characteristics, and a specification of the geometric
constraints between an aerospace vehicle and any physical
locations associated with the sensors - such as the position
of radio navigation aids. The input specification also pro-
vides architectural constraints, such as whether there is one
integrated Kalman filter or a federation of separate Kalman
filters. AMPHION/NAV produces as output code that in-
stantiates one or more Kalman filters. The user can run or
simulate the code, determine that it is lacking (e.g., that the
simulated estimate for altitude is not sufficiently accurate),
reiterate the design (e.g., by adding a radio altimeter sensor
to the specification), and then rerun the experiment.

3 Amphion/NAV System Architecture

Specification

ExplainIt!

Axioms

Explanation
Explanation
templatesdo

m
ai

n
th

eo
ry S
N

A
R

K

Proof

S
y
n

th
es

is
 E

n
gi

n
e

Code
generator

TraceApplicative
Term

Code

Figure 1. Architecture of Amphion/NAV with
ExplainIt!

Figure 1 presents the architecture of the AMPHION/NAV
system. The domain theory (Section 4) specifies the types
and operation signatures in the domain, and contains axi-
oms describing the implementation of the abstract opera-
tions (which are used in the problem specification) in terms

2

of concrete operations (which are used in the implementa-
tion). The domain theory also contains explanation tem-
plates associated with each axiom (Section 5) providing
documentation about their meaning.

The process of deductive synthesis [6, 9] submits the
specification and the axioms of the domain theory to the
synthesis engine, which is the SNARK

�

refutation-based
theorem prover. The theorem prover proves that the specifi-
cation is a consequence of the domain theory, and returns a
proof and witness terms for the output variables, in our case
an applicative term comprising the synthesized program.
The code generator is given the applicative term and pro-
duces code in the target programming language by applying
several program transformation phases. The target language
in AMPHION/NAV is C++ and OCTAVE.

�

Amphion/NAIF
generated Fortran code, but only the last phase of the code
generator needed to be changed for AMPHION/NAV.

The code generator records a trace of the application of
the transformations. The ExplainIt! component (Section 5)
accepts the axiom explanation templates, the proof, the ap-
plicative term, and the code generator trace, and produces
an explanation structure for the final code. This structure
links portions of the target code to explanations. The ex-
planation of a portion of target code is generated from the
explanation templates associated with the axioms that were
used in the creation of that portion of the code.

4 Engineering a Domain Theory for State Es-
timation

The state estimation domain theory represents both the
operations and algorithms in the domain and how those do-
main elements are properly applied. For the initial version
of AMPHION/NAV described in this paper, the scope is that
of advanced graduate-level textbooks (e.g., [1]) state esti-
mation examples. In all, six textbooks were used in de-
veloping the domain theory, ranging from general applied
Kalman filters to specialized texts on INS and GPS systems.
The examples used ranged from simple state estimation sys-
tems with radio beacons to complex INS/GPS systems with
additional aiding sensors. The methodology followed was
to work from concrete examples given in the textbooks, and,
from these examples, to identify the concepts of the domain
and the relationships between those concepts. Input from
domain experts was solicited to validate these efforts. The
domain theory is a collection of modular subtheories each
containing a set of axioms describing the primitives in the
subtheory and the relations between them.

Figure 2 shows the structure of the subtheories in the
current domain theory. The arrows show which subtheories

�

URL: http://www.ai.sri.com/ stickel/snark.html
�

A Matlab clone: http://www.octave.org

import other subtheories (e.g., the axioms for frame conver-
sions import the NAIF axioms). In the synthesis proofs, the
NAIF axioms and frame/coordinate axioms are applied us-
ing resolution, paramodulation and demodulation. All other
axioms are applied using demodulation only. This was a re-
striction made to control the proof process. The arrows in
Figure 2 also manifest themselves in the axioms: the rules
refine primitives from one subtheory into primitives from
a subtheory connected by an arrow. Note that the leaf no-
des of Figure 2 are subtheories whose primitives appear in
the final applicative term. In essence, high-level abstract
primitives specifying Kalman filter architectures and sen-
sor configurations are refined into primitives of Euclidean
geometry and matrix/vector operations. Refinements also
take place within the theories that refine primitives of those
theories into primitives that are wrappers around code com-
ponents.

Kalman
Filter
axioms

Frame/Coordinate
Conversions

Differentiation

NAIF
domain
(Euclidean
geometry)

Sensor
specific
axioms

Vector
Operations

Matrix
Operations

Linearization

Figure 2. Amphion/NAV Domain Theory Orga-
nization

In general, the synthesis engine applies proof search to
apply the axioms in a way that suits the current context.
This may involve making pre-defined assumptions as to the
nature of the current problem (e.g., that the nominal esti-
mate is close enough to the true value to enable a Taylor se-
ries expansion to be accurate) but these assumptions appear
explicitly in the final explanations presented to the user.

A fully declarative domain theory is ideal for expressing
the concepts in a new domain and for communicating and
validating their relationships. On the other hand, code gen-
eration (regardless of which synthesis engine is used) needs
more guidance to be successful. As part of our methodol-
ogy, we began with a highly declarative domain theory and

3

then extended this theory with operational elements to en-
able successful refinement.

Another way to limit the search space is to make use of
decision procedures in the theorem proving process. The
idea is to solve appropriate subtasks (over ground terms)
that come up in the proof by calls to external routines rather
than relying on the proof engine. Amphion/NAIF contained
decision procedures for instantiating variables with the ap-
propriate coordinate frame. AMPHION/NAV uses SNARK’s
procedural attachment mechanism to incorporate decision
procedures from the KIF library

�
(list manipulations, nu-

meric manipulations, etc.) and procedures for low-level ma-
trix manipulations.

5 The ExplainIt! Documentation Generator

The code generated by AMPHION/NAV is annotated
with detailed explanations describing where each statement
and expression in the code came from. Intuitively, an expla-
nation of a statement in the generated program is a collec-
tion of explained connections between the variables, func-
tions and subroutines in that statement and objects, rela-
tions, and functions in the problem specification or domain
theory respectively.

Our explanation technique works on the proof derivation
of the generated program which is a tableau, a tree whose
nodes are sets of formulas together with substitutions of the
existentially quantified variables, and whose arcs are steps
in the proof (i.e., they encode the “derived from” relation).
Thus, an abstract syntax tree (AST) of the synthesized pro-
gram and the empty clause is the root of this derivation tree.
Its leaves are domain theory axioms and the problem speci-
fication. Since the AST and all formulas are represented as
tree-structures terms, the derivation tree is essentially a tree
of trees.

The explanation generation procedure traces back a po-
sition in the abstract syntax tree through the derivation tree
extracting explanation equalities along the way. These
equalities record the links between positions of different
terms in the derivation. By reasoning with these equal-
ities, goal explanation equalities are derived which relate
elements of the generated program with terms in the speci-
fication and formulas in the domain theory.

With these explanation equalitites calculated, the appro-
priate explanation templates of the domain theory axioms
are instantiated and composed. Finally, an XML docu-
ment is assembled, containing an explanation for every exe-
cutable statement in a synthesized program in a vocabulary
that the domain expert understands. The explanation indi-
cates why that statement is in the program and how the sta-
tement relates to the problem specification and the domain

�
URL: http://logic.stanford.edu/kif/kif.html

theory. These steps which are an extension of work reported
in [12] will be described in the following.
Explanation Equalities. All pieces of a formula are iden-
tified using a position notation, described by a path from
the root of the formula to that position. A path description
is a sequence of argument position selectors, e.g., the path��� ����� specifies the position of 	 in the term
���
 �� � 	 ��� � � ,
i.e., 	�� ��� ����� . Explanation equalities capturing the links
between pieces of a formula are assertions of the form
� � ��� � � � � ��� � between terms � � � � � at positions � � and
� � in the term, respectively. Explanation equalities are also
extracted for variable substitutions generated during each
derivation step.
Templates. The axioms of the domain theory are annotated
with explanation templates which consist of text fragments
and variables. All variables occurring in a template must
also occur in the axiom to which the template is attached.
Each axiom can have multiple templates each of which is
associated with a different position in that axiom.
Template Instantiation and Composition. The explana-
tion for a position in the generated program is composed
from the templates associated with the explanation equali-
ties. This is accomplished by constructing an equivalence
class ��� w.r.t. the explanation equalities of the derivation.
Then the desired goal explanation equalities linking a sub-
term to the specification and domain theory are contained
in the corresponding equivalence class; the templates can
be found in the set of templates attached to the formula po-
sitions in � � . To construct the entire explanation, the tem-
plates in this set are instantiated and concatenated together
according to the order in which they occur in the derivation.
Document Assembly. The final output of ExplainIt! is a
document which explains each part of the synthesized code
in a format suitable for the domain engineer. The structure
of the explanation is reflected in the computational struc-
ture of the applicative term. Thus, explanations are con-
structed for each position in the applicative term. As a flex-
ible intermediate format, XML is used, because it facilitates
the generation of various document formats. Furthermore,
hyper-links allow the user to transparently trace between the
final code and the explanation document. This is neces-
sary because the structure of the imperative C++ code does
not necessarily coincide with the structure of the applicative
program.

XSLT [8] is used to produce the final structured HTML
version of the explanation. In order to enhance readability,
all terms containing matrices are shown as HTML tables (in
AMPHION/NAV they are represented as hard-to-read lists
of lists). Fig. 6 shows the upper left corner of the 2x9 mea-
surement matrix � . The XSLT parser can easily be modi-
fied to handle various syntactic transformations thus facili-
tating adaptation to other domains. ExplainIt! is thus con-
figurable in a similar way like Hallgren’s Proof Editor [7],

4

Figure 3. Screen dump of a part of the expla-
nation document

or the ILF system [3].

6 Experiments and Results

We have used AMPHION/NAV to synthesize 5 groups of
examples of single-mode geometric state estimation soft-
ware. The examples use either an inertial navigation sys-
tem (INS), or a GPS system as its basis. As aiding sen-
sors, we have used models for distance measuring equip-
ment (DME), VOR (measuring the angle between the air-
craft and a fixed station), and a barometric altimeter. The
following table gives an indication of the performance of
the system for all examples. The size of the specification is
given as the number of conjuncts in the textual (logic) rep-
resentation of the specification. The domain theory consists
of 622 axioms, 344 of which have been reused from the
NAIF domain.

����������	
depicts the run-time to find a proof

(including loading of the prover’s Lisp code) in seconds on
a Sun Ultra 60. Finally, the number of lines of synthesized
C++ is given. This number includes comments and rather
lengthy interface code (300-350 lines per example).

measure min mean max
size of spec 67 83 114�
��������	� ���

44 390 1311
C++ lines 712 950 1208

7 Conclusions

We have presented AMPHION/NAV, a deductive syn-
thesis system for the automatic generation of highly doc-

umented state estimation software with Kalman filters. Al-
though there have been many improvements over the old
synthesis system with respect to domain complexity, usabil-
ity, and generation of explanations, there is still a number
of important issues to be addressed. During development
of AMPHION/NAV it turned out that the graphical specifi-
cation language, originally developed for space trajectory
specifications, needs extensions for the state estimation do-
main. The original specifications were relational in nature,
whereas a functional specification may be more appropriate
for the new domain.

As described in the paper, the development of the do-
main theory turned out to be a central issue for our synthe-
sis system. Although the old NAIF domain theory could
be reused in an as-is manner, the structure and development
process for the domain theory needs to be improved sub-
stantially. We are investigating in how far techniques from
object-oriented software design can be of help to develop a
domain theory in a much more structured and fundamental
way.

In developing AMPHION/NAV, much effort was spent
on the explanation system. Automatic generation of doc-
umentation is only a first step. Future work will inves-
tigate how far deductive synthesis can support computer-
supported certification of safety-critical code by automatic
generation of verification proof obligations, invariants, and
other annotations for the synthesized code which then can
be checked by a small and trusted proof checker.

References

[1] R. G. Brown and P. Hwang. Introduction to Random Signals
and Applied Kalman Filtering. Wiley, 3rd ed., 1997.

[2] B. I. Dahn and A. Wolf. Natural Language Presentation and
Combination of Automatically Generated Proofs, volume 3
of Applied Logic Series, pp. 175–192. Kluwer, 1996.

[3] A. Gelb (ed). Applied Optimal Estimation. MIT Press, 1974.
[4] C. C. Green. Application of theorem proving to problem

solving. In Proc. IJCAI, pages 219–240, 1969.
[5] T. Hallgren and A. Ranta. An extensible proof text editor.

In Proc. LPAR’2000, volume 1955 of LNAI, pages 70–84.
Springer, 2000.

[6] M. Kay. XSLT Programmer’s Reference. Wrox Press, 2000.
[7] Z. Manna and R. Waldinger. Fundamentals of deductive pro-

gram synthesis. IEEE Transactions on Software Engineer-
ing, 18(8):674–704, 1994.

[8] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and
I. Underwood. Deductive composition of astronomical soft-
ware from subroutine libraries. In Proc. CADE 12, pages
341–355, Springer, 1994.

[9] J. van Baalen, P. Robinson, M. Lowry, and T. Pressburger.
Explaining synthesized software. In Proc. ASE’98, pages
240–248. IEEE, 1998.

5

